Multi-point Codes from the GGS Curves
نویسندگان
چکیده
This paper is concerned with the construction of algebraic geometric codes defined from GGS curves. It is of significant use to describe bases for the Riemann-Roch spaces associated to some totally ramified places, which enables us to study multi-point AG codes. Along this line, we characterize explicitly the Weierstrass semigroups and pure gaps by an exhaustive computation of the basis for Riemann-Roch spaces from GGS curves. Additionally, we determine the floor of a certain type of divisor and investigate the properties of AG codes. Finally, we apply these results to find multi-point codes with excellent parameters. As one of the examples, a presented code with parameters [216, 190,> 18] over F64 yields a new record.
منابع مشابه
One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملAG codes and AG quantum codes from the GGS curve
In this paper, algebraic-geometric (AG) codes associated with the GGS maximal curve are investigated. The Weierstrass semigroup at all Fq2-rational points of the curve is determined; the Feng-Rao designed minimum distance is computed for infinite families of such codes, as well as the automorphism group. As a result, some linear codes with better relative parameters with respect to one-point He...
متن کاملQuantum Codes from Two-Point Divisors on Hermitian and Suzuki Curves
Sarvepalli and Klappenecker showed how to use classical one-point codes on the Hermitian curve to construct symmetric quantum codes. For the said curve, Homma and Kim determined the parameters of a larger family of codes, the two-point codes. For the Suzuki curve, the bound due to Duursma and Kirov gave the exact minimum distance of Suzuki two-point codes over F8 and F32. Of more recent develop...
متن کاملOn Codes from Norm-Trace Curves
The main results of this paper are derived by using only simple Gröbner basis techniques. We present a new construction of evaluation codes from MiuraKamiya curves Cab. We estimate the minimum distance of the codes and estimate the minimum distance of a class of related one-point geometric Goppa codes. With respect to these estimates the new codes perform at least as well as the related geometr...
متن کاملExplicit Construction of AG Codes from Generalized Hermitian Curves
We present multi-point algebraic geometric codes overstepping the Gilbert-Varshamov bound. The construction is based on the generalized Hermitian curve introduced by A. Bassa, P. Beelen, A. Garcia, and H. Stichtenoth. These codes are described in detail by constrcting a generator matrix. It turns out that these codes have nice properties similar to those of Hermitian codes. It is shown that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.00313 شماره
صفحات -
تاریخ انتشار 2017